Downstream variations in the width of bedrock channels
نویسندگان
چکیده
Field surveys of channel width w and drainage area A in bedrock channel reaches reveal relationships where w 5 cA, similar to the classic hydraulic geometry of alluvial channels. Data from five mountain channel networks support the assumption used in many landscape evolution models that an alluvial hydraulic geometry relationship where b 5 0.3–0.5 holds for bedrock channel systems. Although there is substantial local variability in channel width in bedrock channel systems, there is no systematic difference in width versus drainage area relations for the surveyed bedrock and alluvial reaches in sedimentary lithologies in coastal Oregon and Washington. In contrast, bedrock channels were narrower, and therefore had deeper flow, than alluvial channels with equal drainage areas in the granite and limestone terrain of the Yuba River, California. In addition, data from the Mokelumne River show that bedrock channel width decreases substantially downstream at the contact between relatively weak limestone and more erosion-resistant granite, but that channel slope does not change appreciably across contacts between these two lithologies. Data from coastal Oregon drainage basins further show systematic channel widening after flood flows and debris flow impacts. We conclude that downstream variations in the width of bedrock channels generally follow traditional hydraulic geometry relations but also reflect the local influence of longitudinal patterns of bedrock erosivity and disturbance history.
منابع مشابه
Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California
[1] Recent theoretical models suggest that topographic characteristics of bedrock channels are products of interactions among tectonics, substrate resistance, and the climatically modulated erosive ability of the river. The degree to which these factors influence the form of channel profiles is poorly quantified at present. Here we investigate bedrock channels developed across the southern flan...
متن کاملDownstream geomorphic variation and local bedrock influence of a steep transitional river: Blue Ridge to Piedmont, South Carolina
Spatial patterns in geomorphic variations are examined in a river transition from the Southern Blue Ridge to the Piedmont physiographic regions. Downstream hydraulic geometry (DHG), fining of bed material, and changes in reach-scale channel-bed morphology (bedforms) were sampled and analyzed. DHG power functions were well developed (r > 0.75 for channel area, width, and depth). Bed material sho...
متن کاملControls on the channel width of rivers: Implications for modeling fluvial incision of bedrock
On the basis of the Manning equation and basic mass conservation principles, we derive an expression for scaling the steadystate width (W) of river channels as a function of discharge (Q), channel slope (S), roughness (n), and width-to-depth ratio (!): W " [!(! # 2)2/3]3/8Q3/8S$3/16n3/8. We propose that channel width-todepth ratio, in addition to roughness, is a function of the material in whic...
متن کاملLithologic and Tectonic Controls on Bedrock Channel Form at the Northwest Himalayan Front
Recognition that channel form reflects a river's ability to erode rock has spawned stream-power models that estimate patterns of incision by approximating energy dissipation within a channel. Most commonly, these models assume channel width exponentially scales with drainage area, in part, because drainage area is easily extracted from digital elevation models (DEMs). However, this assumption i...
متن کاملMeander formation in supraglacial streams
[1] Meandering streams on the surface of glaciers are similar in planform geometry to meanders in alluvial and bedrock rivers, despite fundamental differences in the mechanisms and timescales of incision. We develop depth-averaged conservation equations for flow in such supraglacial channels with erodible boundaries and solve the linear stability problem for harmonic perturbations to an initial...
متن کامل